skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Beguería, Santiago"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large-scale continuous crop monitoring systems (CMS) are key to detect and manage agricultural production anomalies. Current CMS exploit meteorological and crop growth models, and satellite imagery, but have underutilized legacy sources of information such as operational crop expert surveys with long and uninterrupted records. We argue that crop expert assessments, despite their subjective and categorical nature, capture the complexities of assessing the “status” of a crop better than any model or remote sensing retrieval. This is because crop rating data naturally encapsulates the broad expert knowledge of many individual surveyors spread throughout the country, constituting a sophisticated network of “people as sensors” that provide consistent and accurate information on crop progress. We analyze data from the US Department of Agriculture (USDA) Crop Progress and Condition (CPC) survey between 1987 and 2019 for four major crops across the US, and show how to transform the original qualitative data into a continuous, probabilistic variable better suited to quantitative analysis. Although the CPC reflects the subjective perception of many surveyors at different locations, the underlying models that describe the reported crop status are statistically robust and maintain similar characteristics across different crops, exhibit long-term stability, and have nation-wide validity. We discuss the origin and interpretation of existing spatial and temporal biases in the survey data. Finally, we propose a quantitative Crop Condition Index based on the CPC survey and demonstrate how this index can be used to monitor crop status and provide earlier and more precise predictions of crop yields than official USDA forecasts released midseason. 
    more » « less
  2. null (Ed.)
    Accurate monitoring of crop condition is critical to detect anomalies that may threaten the economic viability of agriculture and to understand how crops respond to climatic variability. Retrievals of soil moisture and vegetation information from satellite-based remote-sensing products offer an opportunity for continuous and affordable crop condition monitoring. This study compared weekly anomalies in accumulated gross primary production (GPP) from the SMAP Level-4 Carbon (L4C) product to anomalies calculated from a state-scale weekly crop condition index (CCI) and also to crop yield anomalies calculated from county-level yield data reported at the end of the season. We focused on barley, spring wheat, corn, and soybeans cultivated in the continental United States from 2000 to 2018. We found that consistencies between SMAP L4C GPP anomalies and both crop condition and yield anomalies increased as crops developed from the emergence stage (r: 0.4–0.7) and matured (r: 0.6–0.9) and that the agreement was better in drier regions (r: 0.4–0.9) than in wetter regions (r: −0.8–0.4). The L4C provides weekly GPP estimates at a 1-km scale, permitting the evaluation and tracking of anomalies in crop status at higher spatial detail than metrics based on the state-level CCI or county-level crop yields. We demonstrate that the L4C GPP product can be used operationally to monitor crop condition with the potential to become an important tool to inform decision-making and research. 
    more » « less